
Motor

motor.devel@gmail.com

Jul 07, 2023





GUIDES:

1 Motor documentation 1
1.1 Using Motor and developing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Building Motor from source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1.1 Setting up a build environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1.2 Building from the command line . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Integrated Development Environment support . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Extra tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Pyxx, the C/C++/Objective-C/Objective-C++ parser . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1.1 Parsing methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1.2 Rule tweaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1.3 Static conflict resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1.4 Dynamic conflict resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2.2 The OpenCL C++ toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2 API documentation 55

3 Indices and tables 57

i



ii



CHAPTER

ONE

MOTOR DOCUMENTATION

1.1 Using Motor and developing

1.1.1 Building Motor from source

1.1.1.1 Setting up a build environment

In order to build the engine from source, the following components are required:

• A host running Linux, macOS, FreeBSD, Solaris or Windows

• Python (version 2.7 or 3.4+)

• Flex and Bison

• A C++ compiler in the path or installed in a standard location

– Clang version 2.9 or above

– GCC version 3.4 or above

– SunCC version 5.11 or above

– Microsoft Visual Studio 2003 or above

– Intel compiler, version 9 or above

• Many plugins require third party libraries in order to be enabled.

The build system will usually automatically detect compilers, Flex and Bison from the environment and/or the registry.
Some of these components can be downloaded from the GitHub release page for certain platforms/architectures.

Since Motor is very modular, it does not strictly require any development library to be installed, at the cost of seeing the
plugin disabled. The core engine depends only on standard or operating system libraries (threading, filesystem, etc.).

1.1.1.2 Building from the command line

The Motor uses WAF as the build system. The build happens in two phases:

1. The build environments will be created. This step detects all available compilers (including cross compilers) and
creates toolchain environments for each detected target. This step needs to be executed only once for the host;

~/motor > python waf configure

1

https://waf.io/


Motor

Setting top to : ~/motor
Setting out to : ~/motor/bld/.waf
Checking for program 'flex' : /usr/bin/flex
Checking for program 'bison' : /usr/bin/bison
Looking for clang compilers : done
Looking for msvc compilers : done
Looking for gcc compilers : done
Looking for suncc compilers : done
Looking for intel compilers : done
Looking for clang 10+ : /usr/lib/llvm-12/bin/clang++
Checking for Android tools : done
+ configuring for platform Linux
`- linux_gnu_amd64-clang_amd64-11.0.1 : gnu {unit tests}
`- linux_gnu_amd64-clang_amd64-12.0.0 : gnu {unit tests}
`- linux_gnu_amd64-gcc_amd64-9.3.0 : gnu {unit tests}
`- linux_gnu_amd64-gcc_amd64-10.2.1 : gnu {unit tests}
`- linux_gnu_amd64-suncc_amd64-5.15 : sun {unit tests}
`- linux_gnu_x86-clang_x86-11.0.1 : gnu {unit tests}
`- linux_gnu_x86-clang_x86-12.0.0 : gnu {unit tests}
`- linux_gnu_x86-gcc_x86-9.3.0 : gnu {unit tests}
`- linux_gnu_x86-gcc_x86-10.2.1 : gnu {unit tests}
`- linux_gnu_x86-suncc_x86-5.15 : sun {unit tests}
+ configuring for platform windows
`- mingw_amd64-gcc_amd64-10 : mingw
`- mingw_x86-gcc_x86-10 : mingw
+ configuring for platform android
`- android_nougat_7.0-clang-9.0.8 : androideabi

`- arm64 : androideabi
`- armv7a : androideabi
`- amd64 : androideabi
`- x86 : androideabi

Looking for CUDA : 11.3
'configure' finished successfully (19.802s)

2. The build can be started for one of the detected target environments.

~/motor > python waf build:linux_gnu_amd64-clang_amd64-12.0.0:debug

setup not run; setting up the toolchain
'build:linux_gnu_amd64-clang_amd64-12.0.0:debug' finished successfully (0.004s)
Setting up environment : linux_gnu_amd64-clang_amd64-12.0.0
compute.CUDA : cuda 11.3 [3.5, 3.7, 5.0, 5.2, 5.3, 6.0,␣

→˓6.1, 6.2, 7.0, 7.2, 7.5, 8.0]
compute.OpenCL : from pkg-config
compute.cpu : vanilla, .sse3, .sse4, .avx, .avx2
graphics.OpenGL : from pkg-config
graphics.OpenGLES2 : from pkg-config
graphics.freetype : from pkg-config
gui.gtk3 : from pkg-config
physics.bullet : from pkg-config
scripting.lua : version -5.4 from pkg-config
scripting.python : 2.7, 3.9
system.X11 : from pkg-config

(continues on next page)

2 Chapter 1. Motor documentation



Motor

(continued from previous page)

system.zlib : from pkg-config
system.minizip : from pkg-config

'setup:linux_gnu_amd64-clang_amd64-12.0.0' finished successfully (1.008s)
Generating LALR tables
Generating LALR tables
[ 1/618] {bison} motor.reflection.pp/valueparser.cc
[ 2/618] {bison} plugin.scripting.package.pp/packageparser.cc
[ 3/618] {master} motor.minitl/master-cxx-0.cc
[ 4/618] {master} motor.core/master-c-0.c
[ 5/618] {master} motor.core/master-cxx-2.cc
[ 6/618] {master} motor.core/master-cxx-1.cc
[ 7/618] {master} motor.core/master-cxx-0.cc
[ 8/618] {master} motor.network/master-cxx-0.cc
[ 9/618] {master} motor.filesystem/master-cxx-0.cc
[ 10/618] {master} motor.introspect/master-cxx-0.cc
[ 11/618] {master} motor.settings/master-cxx-0.cc
[ 12/618] {master} motor.scheduler/master-cxx-0.cc
[ 13/618] {master} motor.plugin/master-cxx-0.cc
[ 14/618] {master} plugin.graphics.shadermodel1/master-cxx-1.cc
[ 15/618] {master} plugin.graphics.shadermodel1/master-cxx-0.cc
[ 16/618] {master} plugin.compute.cpu/master-cxx-0.cc
[ 17/618] {kernel_ast} test.compute.unittests.pp/loop.ast
[ 18/618] {kernel_ast} test.compute.unittests.pp/if.ast
[ 19/618] {master} plugin.graphics.shadermodel2/master-cxx-0.cc
[ 20/618] {master} plugin.scripting.pythonlib/master-cxx-1.cc
[ 21/618] {master} plugin.scripting.pythonlib/master-cxx-0.cc
[ 22/618] {master} plugin.graphics.shadermodel3/master-cxx-0.cc
[ 23/618] {master} plugin.compute.opencl/master-cxx-0.cc
[ 24/618] {master} plugin.compute.cuda/master-cxx-0.cc
[ 25/618] {master} plugin.graphics.windowing/master-cxx-0.cc
[ 26/618] {master} plugin.debug.runtime/master-cxx-0.cc
[ 27/618] {master} plugin.graphics.shadermodel4/master-cxx-0.cc
[ 28/618] {clc64} test.compute.unittests.statement.if.cl/if.64.ll
[ 29/618] {clc32} test.compute.unittests.statement.if.cl/if.32.ll
[ 30/618] {clc64} test.compute.unittests.statement.loop.cl/loop.64.ll
[ 31/618] {clc32} test.compute.unittests.statement.loop.cl/loop.32.ll
[ 32/618] {nvcc} test.compute.unittests.statement.if.cuda/if.fatbin
[ 33/618] {nvcc} test.compute.unittests.statement.loop.cuda/loop.fatbin
[ 34/618] {master} motor.launcher/master-cxx-0.cc
[ 35/618] {master} plugin.debug.assert/master-cxx-0.cc
...
[612/618] {cxxshlib} plugin.graphics.nullrender/libplugin.graphics.nullrender.so
[613/618] {dbg_copy} plugin.graphics.shadermodel4/libplugin.graphics.
→˓shadermodel4.so.debug
[614/618] {dbg_strip} plugin.graphics.shadermodel4/libplugin.graphics.
→˓shadermodel4.so
[615/618] {install} plugin.graphics.shadermodel4/libplugin.graphics.
→˓shadermodel4.so.debug
[616/618] {dbg_copy} plugin.graphics.nullrender/libplugin.graphics.nullrender.so.
→˓debug
[617/618] {dbg_strip} plugin.graphics.nullrender/libplugin.graphics.nullrender.so
[618/618] {install} plugin.graphics.nullrender/libplugin.graphics.nullrender.so.

(continues on next page)

1.1. Using Motor and developing 3



Motor

(continued from previous page)

→˓debug
'build:linux_gnu_amd64-clang_amd64-12.0.0:debug' finished successfully (4.422s)

1.1.2 Integrated Development Environment support

1.2 Extra tools

1.2.1 Pyxx, the C/C++/Objective-C/Objective-C++ parser

The architecture of Motor relies very much on inspecting type information in the runtime. The type database is used
by the editor to create and manipulate game objects, and by the LUA and Python plugins to allow the scripts to interact
with C++ objects.

The C++ type database is so important that a lot of effort was spent creating a good workflow to extract type information
at compile time from certain header files and create the type database, with minimal input from the developer. Creating
a class in C++ should be sufficient to make it available in the runtime through the reflection library, without additional
boilerplate code. This means the C++ code is parsed in the build system and additional type information is compiled
into the binary file and available at runtime.

Some tools already exist to parse C++ code and extract some information, such as Qt’s MOC, Doxygen and Clang.
Adding a dependency on such a tool is a difficult decision to make though. The tool might be more or less difficult
to install on the hosts, or even not available on some hosts, or its API might not be stable across major revisions. For
instance, Clang plugins to extract the AST have changed a lot between Clang 3.0 and Clang 13. Qt is installed pretty
easily on Windows, but comes with many unnecessary dependencies, and the build system would need to locate the Qt
SDK through probing the registry. Motor relies currently on very few mandatory dependencies (Python, flex, bison)
and adding a dependency on Qt or Clang would create a lot of friction.

For these reasons, the decision was made to create a C++ parser in Python (which is already a dependency of the build
system) to extract the type information from C++ headers. Building a complete C++ parser is a notoriously difficult
task. But with the right parser generator and a deep analysis of the grammar, it is possible to create such a parser. The
next sections describe the resulting parsing tool Pyxx, a frontend that can parse C, C++, Objective-C and Objective-C++
source files, and present all conflicts in the C++ grammar and their resolution in the annotated grammar that the parser
generator uses in Pyxx.

Contents

• Parsing methodology

– Parsing stages

– Conflict resolution

– Dynamic conflict resolution

– Conflict context and counter-examples

• Rule tweaks

– Allowing extra attribute-specifier-seq?

– class-head / elaborated-type-specifier and enum-head / elaborated-enum-specifier

• Static conflict resolution

– template-parameter-list/ template-argument-list, >

4 Chapter 1. Motor documentation

https://doc.qt.io/archives/qt-4.8/moc.html
https://www.doxygen.nl/index.html
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
http://www.yosefk.com/c++fqa/defective.html#defect-2
https://www.reddit.com/r/cpp/comments/h0iok/the_hard_part_about_writing_a_c_parser/
http://www.swig.org/article_cpp.html


Motor

– selection-statement, else

– elaborated-enum-specifier / opaque-enum-declaration

– enum-base / bitfield specifier

– base-clause / bitfield specifier

– new-expression, { and assignment-expression, =

– nested-name-specifier, ::

– conversion-type-id, attribute-specifier-seq

– explicit-specifier/noexcept-specifier, (

– Operators new, new[], delete, delete[]

– Operators delete, delete[] and lambda-expression

– conversion-declarator, binary operators

– new-type-id, binary operators

– destructor, unary ~ operator

– constraint-logical-and-expression, &&

– global-module-fragment

– requirement-expression, nested-requirement

– id-expression in a template-argument

– export-declaration, export module-import-declaration

• Dynamic conflict resolution

– class-name, enum-name, typedef-name in a type-name

– declarator, decl-specifier

– template-id, <

– variadic-parameter-list, pack-declarator

– primary-expression, pure-specifier / bitfield declaration, mem-initializer / compound-statement,
brace-or-equal-initializer

– typename-specifier, typename-parameter

– initializer, parameters-and-qualifiers

– trailing-return-type, abstract-declarator / parameters-and-qualifiers / initializer

– type template parameter, non-type class template parameter

– deduction-guide, template-declaration

1.2. Extra tools 5



Motor

1.2.1.1 Parsing methodology

Parsing stages

The C++ compilation process is traditionally done in several steps, some are common for compiling any programming
language. Processing a C++ source file usually starts by the following steps:

• A preprocessing step is responsible for concatenating all source files into a single text that is sent to the next
phase. Preprocessor tokens are evaluated, included files are replaced by their preprocessed content and macros
are expanded.

• A lexical analysis is then responsible to break down the text into tokens. The tokenizing process cuts down the
text into substrings, and classify those substrings into categories.

• A syntax analysis is then responsible for matching sequences of tokens with rules of a formal grammar. This step
helps recognize longer sequences of tokens that match patterns defined by the grammar, and replace the whole
sequence with a symbol summarizing the content of the sequence.

• After the input has been verified to conform to the grammar, a semantic analysis is then responsible for under-
standing and verifying the semantic information of the code. The semantic analyzer is responsible for determining
the intention of the different parts of the program and verify that they are correct.

After the semantic information has been processed and verified, a compiler would now have enough information to
move on to the code generation steps. These steps can vary from compiler to compiler, and are not presented here in
detail. Pyxx stops its processing after the semantic analysis and uses the semantic information to generate run-time
type information that can be compiled into the program. Moreover, Pyxx is built to not run the preprocessing step even
if it results in loss of semantic information. Pyxx will only run the lexical, syntax and part of the semantic analysis.

While this theoretical breakdown of the first few stages of a compilation process seems to show that the steps can be
run sequentially and independently, the convolution of the C++ grammar actually causes some of these steps to become
interdependent. For instance, the C++ language was changed in 2011 to allow the >> token to be broken down into two
> tokens to serve as template brackets. The operation of breaking down the token is dependent on the previous tokens
encountered, and one way to implement this feature is to create a feedback channel between the syntactic analyzer which
holds the information about template parameter lists, and the lexical analyzer which does not have the information about
the current state of parsing.

Pyxx is the frontend tool that will drive the different analysis steps. Under the hood, it uses the glrp library which is
a parser generator. glrp uses a formal grammar description with annotations in order to generate a state machine that
will be used by the lexical and syntactic analyzers.

Conflict resolution

In several parts of the grammar, parser generators such as Bison will emit a warning that a conflict has been encountered.
A conflict happens when two actions could legally be considered when encountering a token. There are several causes
as to why conflicts happen, for instance:

• When a sequence of tokens could be reduced by the same rules, but in a different order. In many grammars,
parsing of binary operations fall in this category:

int i = 1 + 2 * 3; // (1+2) * 3 or 1 + (2*3)?

The grammar described in the C++ standard explicitly avoid all ambiguities in the expression rules in order to
avoid generating such conflicts. It does not however disambiguate the dangling else construction.

These conflicts are usually solved by assigning priority and associativity to the tokens involved in the conflict.
Priority is involved when there is a conflict between two different tokens (x + y * z), while associativity is
used to resolve the order of the rule reduction when the same operation is chained (x + y + z).

6 Chapter 1. Motor documentation

https://en.wikipedia.org/wiki/Dangling_else


Motor

• When a sequence of tokens could legally be interpreted by two different rules. In this case the grammar is truly
ambiguous, and an arbitrary choice is made to use one of the two rules. In C++, such an ambiguity exists between
a cast expression and function declarations:

// A function named i takes an integer and returns an integer.
// Not an integer variable initialized with a cast expression.
int i(int(my_dbl));

• When the sequence of tokens are ambiguous due to a lack of semantic information. The most important example
in C++ is the role that identifiers can play. An identifier can refer to a variable (for instance a value in an
expression) or a type (for instance the type specifier in a declaration). When such a conflict is encountered, Pyxx
shifts to a dynamic conflict resolution method by using a GLR parser implementation.

• When the sequence of tokens matches different rules up to a certain token, but the rule construction forces the
parser to make a decision before that disambiguating token is encountered. In those cases, peeking at the next
few tokens would lift the ambiguity. This is usually not an operations that parsers provide though.

An example in the C++ grammar occurs around the definition of inline namespaces and inline declarations. An
inline namespace is defined by the rule:

inline-namespace = inline namespace attribute-specifier-seq? identifier {␣
→˓namespace-body }

While an inline declaration is defined by the rule:

inline-declaration = attribute-specifier-seq? inline decl-specifier-seq declarator ;

When the parser encounters the inline keyword, it is already forced to make a decision about the optional
attribute-specifier-seq symbol. If the parser could only see the inline namespace rule, it would shift the inline
symbol onto the symbol stack and move on to the next token. If an inline declaration was the only rule though,
the parser would shift two symbols: the empty attribute-specifier-seq followed by the inline token.
When both rules exist, the parser is now finding a conflict; should it favor the inline namespace rule and push
one symbol onto the stack, or the inline declaration and push two symbols onto the stack?

As can be seen in this example, the token following inline would already be sufficient to resolve this conflict.
But in a parser that uses only one token of lookahead, this token is not yet available and there is not enough
information to resolve the conflict at the time it is encountered. Some conflicts occur within series of tokens
that will eventually lead to a disambiguation; but there are cases where the series of tokens encountered before
finding the disambiguation is not bounded, i.e. for any parser using k tokens in its lookahead list, one can find
an input text where the disambiguation is found in token k+1 or beyond.

A common solution employed to resolve those conflicts is to increase the overlap between the conflicting rules.
For instance, one could change the grammar above to allow an optional attribute-specifier-seq in front of an
inline namespace. There is now no conflict anymore; when the inline token is encountered, the parser can shift
an empty attribute-specifier-seq symbol onto the stack, followed by the inline token, and move on to
the next state. The parser generator does not have to make a choice at this stage and can still take both rules in
consideration for now.

Extending the rules to solve conflicts actually changes the language that is parsed; it creates rules that allow
invalid code to be parsed successfully. It is however easy to add a verification during semantic analysis to reject
the constructions that were accepted by the extended rule. This often allows for clearer error messages. In the
original grammar, the following C++ code generates very different error messages in the GNU compiler GCC
and in Clang:

[[a::b]] inline namespace A
{
};

1.2. Extra tools 7



Motor

$> g++ main.cc
main.cc:1:17: error: expected unqualified-id before ‘namespace’

1 | [[a::b]] inline namespace A
| ^~~~~~~~~

$> clang++ main.cc
main.cc:1:1: error: an attribute list cannot appear here
[[a::b]] inline namespace A
^~~~~~~~

Notice that Clang’s error message was clearer than the one of GCC.

Tip: Rules that are similar do not confuse only the parsers; they also confuse the users of the language. Increas-
ing the overlap between rules and shifting the analysis work to the semantic analyzer is not only a good way to
solve an ambiguity for the parser, it allows to emit clear error messages to the users too.

Dynamic conflict resolution

Applying associativity and precedence rules to tokens, and relaxing grammar rules to make the grammar less am-
biguous, are techniques that help solve conflicts directly when the parsing tables are constructed. When entering the
conflict situation, the parser will always make the same choice, the choice that was implemented in the annotations of
the grammar. There are cases however where the correct solution to the conflict depends on the context and cannot be
decided during table generation. In that case, the conflict resolution has to be delayed until the semantic analysis pass,
which has access to the semantic representation of the whole translation unit to make a decision.

For instance, the C++ grammar does not specify tightly what a valid declaration is, and a large amount of work is
delegated to the semantic analyzer. In declarations, { } can be interpreted as an initializer for a variable or constant,
or as a code block for a function definition. But the declarator grammar rules do not differentiate between function
declarations and variable declarations, so the syntactic analyzer delegates this interpretation to the semantic analyzer,
which has sufficient context to differentiate a variable declaration from a function declaration.

Another undecidable conflict occurs when an identifier is encountered. The parser does not know yet what the identifier
refers to, as this information is only computed during the semantic analysis pass. In the C++ 23 grammar, identifiers
can name 8 different entities:

• an unqualified id for a variable, constant, parameter or method

• a namespace or namespace alias

• a class/struct/union name

• an enum name

• a typedef name

• a template name

• a concept name

• a bitfield name

In C, parsers rely sometimes on a lexer hack to decide what the identifier refers to. This is possible because in C, all
typedefs need to be defined before they are used. An identifier that is not yet encountered before is considered to be a
value type and not a typedef. In C++ however, it is possible to use a type before it has been declared:

8 Chapter 1. Motor documentation

https://en.wikipedia.org/wiki/Lexer_hack


Motor

class X
{
void f()
{

Y y; // first use of Y here
}

class Y // declaration of Y here
{
};

};

The consequence is that a lexer hack cannot disambiguate all cases. Due to name resolution rules, it is even possible
that a lexer hack would incorrectly find another entity declared before the point of usage, which would lead to a different
interpretation of the sequence of tokens.

All parsers can handle conflict resolution at table generation time. But for conflicts that can’t be resolved until parsing
time, other strategies need to be applied. Here are some strategies that can help handle these conflicts:

• Create a breadth-first parser instead of depth-first. In this scenario, the parser starts recording the input stream
when it encounters the { token, and pauses interpretation until it finds the matching } token. When the current
scope is closed, the parser can run a partial semantic analysis then reopen all saved input streams and interpret
them recursively.

• Modify the grammar to be even more permissive. In some cases this would be a perfectly valid strategy. In other
cases though, the grammar would need a massive refactoring to accept all conflicting rules into a single, relaxed
rule.

• Allow the parse method to maintain several valid states in parallel. This kind of parser is called a generalized
parser and allows to explore several possibilities during the parsing phase, until the incorrect ones are eliminated
or until all valid possibilities are merged into one. This tool quickly helps solve all conflicts where the ambiguity
would eventually disappear after more tokens are parsed. When a true ambiguity is encountered, a merge strat-
egy helps collapse all available possibilities into one to continue parsing. The collapsed possibilities are then
unpacked by the semantic analyzer, and at this point it can make a decision about the correct interpretation.

For this tool, the choice was made to generate a GLR parser from LALR tables. The LALR tables allow precedence
rules which helps resolving conflicts during table generation. For cases that cannot be decided during table generation,
the GLR parser allows multiple options to be explored, and later collapsed into a single node in the syntax tree by
merging the multiple options into one. The semantic analyzers removes invalid constructions at a later stage.

The library glrp was forked from open-source parser generators PLY and SLY. The table creation algorithm is the same
but was enhanced with conflict resolution tools. The parsing method is rewritten as a GLR parser. The parser tool
creates LALR tables from an annotated BNF grammar. glrp processes the C++ grammar declared in Pyxx and creates
tables that Pyxx loads to create its state machine.

The grammars are extracted from the C 23 standard draft and the C++ 23 standard draft. The parser generator lists all
conflicts in the standard grammar and drives annotations, either to prioritize rules (static conflict resolution) or to split
parsing into branches and schedule merges when the branches reduce to the trunk (dynamic conflict resolution).

While the parser generator is very similar to Bison, it contains more debugging tools to analyze the grammar in order
to provide better context for conflicts, more solutions to achieve conflict resolution, and a static analyzer of merge
possibilities after splitting the parsing.

1.2. Extra tools 9

https://en.wikipedia.org/wiki/GLR_parser
https://en.wikipedia.org/wiki/GLR_parser
http://www.dabeaz.com/ply/index.html
https://github.com/dabeaz/sly
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2596.pdf
https://eel.is/c++draft
https://www.gnu.org/software/bison/


Motor

Conflict context and counter-examples

In order to apply any conflict resolution technique, it is necessary to understand the context in which a conflict occurs
to apply the correct solution. The parser generator is usually giving very little context when a conflict is encountered. It
does list all rules that are in conflict, and the token that is causing the conflict. This information alone is rarely sufficient
in order to fully understand why the conflict occurs. Here is an example of the conflict report given for the dangling
else construction:

shift-reduce conflict for token else in state 1750

Shift using rule selection-statement -> if ( condition ) compound-statement else␣
→˓statement
Reduce using rule selection-statement -> if ( condition ) compound-statement

Just reading the report from the parser generator does not clarify why a conflict is happening here. A few years of
experience in compiler construction already helps a lot in understanding what the parser generator is complaining
about: it finds that there is a possibility to continue the selection-statement by shifting the else token, or to end the
selection-statement here without an else clause because another rule allows a selection-statement to be followed by the
else token.

People who have looked at a few grammars can now understand that there is a possibility that the compound-statement
that is inside the selection-statement is a selection-statement itself. The consequence is that it is unclear which one
the else token is for: is it introducing the else clause of the inner selection-statement or the else clause of the outer
selection-statement?

This is a fairly simple, well known example of conflict, so it is relatively easy to discover what the parser generator is
warning about, and how to fix it. The else token is not employed often in the grammar either, so exploring all its uses
and finding the one that is causing the conflict is done quickly. But other instances of conflicts are much more difficult
to understand without a deep knowledge of the grammar. Here is a second example:

shift-reduce conflict for token [[ in state 127

Shift using rule attribute-specifier -> [[ attribute-using-prefix? attribute-list ] ]
Reduce using rule attribute-specifier-seq? ->

In this instance, the parser generator is encountering a token that introduces an attribute-specifier. It finds two possi-
bilities: start to match the attribute-specifier rule, or first reduce the current attribute-specifier-seq.

After some investigation, one starts to see that the problem here is that there is a rule somewhere in the grammar that
allows two (optional) attribute-specifier-seq symbols to follow one another. When two sequences appear in a row, the
parser cannot decide where the first sequence ends and where the second starts.

One would need to know the C++ grammar inside out to find which rule (or set of rules) cause this sequence to happen.
There is no obvious point in the grammar where two attribute-specifier-seq seem to follow each other. Knowing the
rules that allow this to happen is critical to apply the correct resolution though; the two possible resolutions are that
the first attribute-specifier-seq takes precedence over the second one, or the other way around. In order to know what
to prioritize, it is imperative to find out in the grammar where those two symbols are allowed to follow each other by
looking at rules that can end with an attribute-specifier-seq and find a rule that continues with an attribute-specifier-seq.

As said above, a parser generator tool warns about around 3000 conflicts in the C++ grammar. Many of those conflicts
are actually duplicates (luckily!) but they happen in different contexts, with different tokens. Investigating all 3000
conflicts and the context in which they occur would be an almost impossible task without assistance. Bison comes
with an analysis tool that helps the investigation: it can optionally provide counter-examples for each conflict that
is encountered. Unfortunately, Bison is attempting a deep analysis of the context to identify if the conflict is a true
ambiguity in the grammar, or if it is eventually resolved after a few symbols have been shifted onto the stack. This
feature is very useful when developing a grammar from the ground up; a computer language engineer would be able
to always measure the effect of modifying the grammar. But it works best on a grammar that is currently conflict-free

10 Chapter 1. Motor documentation



Motor

or almost. When a grammar that has 3000 conflicts is used as an input, it takes several hours to provide the counter-
examples.

Pyxx uses the glrp library as a parser generator. The glrp tool was built specifically to assist with debugging the C++
grammars; its table generation algorithm is the same as Bison and other tools, but it implements fast counter-example
diagnostics to assist with debugging a very large grammar with many conflicts. Unlike Bison, when the parser generator
encounters a conflict that causes a fork instead of a static resolution, the grammar can be annotated to indicate that the
author expects a split action. The warning is then not emitted, since it is considered that the conflict is handled. Bison
does not allow silencing specific warnings or counter-examples, so all conflicts that will leverage the GLR parser
algorithm will continue to emit warnings. It is possible to tell Bison how many conflicts are expected in the grammar,
but not specifically which conflicts. In Pyxx, To ensure that the author’s intentions are clear, when a rule is annotated
as causing a split, then all rules involved in the conflict need the same annotation, otherwise a warning will be emitted.

Counter-examples provided by glrp allow to find the origin of the conflicts described above. The dangling-else counter-
example shows clearly that the conflict happens in nested selection-statements:

shift using rule selection-statement -> if constexpr? ( condition ) statement else␣
→˓statement

if constexpr? ( condition ) attribute-specifier-seq? if constexpr? ( condition )␣
→˓statement else statement

selection-
→˓statement

␣
→˓statement
selection-

→˓statement

reduce using rule selection-statement -> if constexpr? ( condition ) statement

if constexpr? ( condition ) attribute-specifier-seq? if constexpr? ( condition )␣
→˓statement else statement

selection-
→˓statement

␣
→˓statement
selection-

→˓statement

After filtering out some very similar contexts, we see the following two contexts where two attribute-specifier-seqs are
allowed to follow each other:

reduce using rule attribute-specifier-seq? ->

[[ attribute-using-prefix? attribute-list ] ] : constant-
→˓expression brace-or-equal-initializer? ;
attribute-specifier-seq? attribute-specifier

attribute-specifier-seq
attribute-specifier-seq?
member-

→˓declarator
member-declarator-list?

→˓

member-
(continues on next page)

1.2. Extra tools 11



Motor

(continued from previous page)

→˓declaration

operator type-specifier-seq * ␣
→˓ [[ attribute-using-prefix? attribute-list ] ]

attribute-specifier-seq? cv-qualifier-seq? conversion-
→˓declarator? attribute-specifier

ptr-operator ␣
→˓ attribute-specifier-seq

conversion-declarator?
→˓ attribute-specifier-seq?
→˓

conversion-type-
→˓id
conversion-function-

→˓id
unqualified-

→˓id
id-

→˓expression
declarator-

→˓id
noptr-

→˓declarator

shift using rule attribute-specifier -> [[ attribute-using-prefix? attribute-list ] ]

[[ attribute-using-prefix? attribute-list ] ] member-declarator-list? ;
attribute-specifier
attribute-specifier-seq
attribute-specifier-seq?
member-declaration

operator type-specifier-seq * [[ attribute-using-prefix? attribute-list ] ] cv-
→˓qualifier-seq? conversion-declarator? attribute-specifier-seq?

attribute-specifier
attribute-specifier-seq
attribute-specifier-seq?

ptr-
→˓operator

conversion-declarator?
→˓

conversion-type-
→˓id
conversion-function-

→˓id
unqualified-

→˓id
id-

→˓expression
declarator-

→˓id
noptr-

(continues on next page)

12 Chapter 1. Motor documentation



Motor

(continued from previous page)

→˓declarator

With this information, it is now possible to decide which priority to apply on the rules in order to solve the conflict.

1.2.1.2 Rule tweaks

This section lists all amendments to the rules that were applied in order to simplify the grammar. In all cases, the
resulting grammar is either equivalent or more permissive than the official C++ grammar described in the C++ standard.
The rule modifications allow conflicts to be simplified away without applying any priority changes or dynamic conflict
resolution.

In the cases where the grammar is expanded to accept more, extra work is shifted towards the semantic analyzer to
properly log errors in case an invalid construct was incorrectly accepted during the parsing phase. This is not necessarily
a downside though, as the semantic analyzer can usually offer much better error messages than the parser.

Allowing extra attribute-specifier-seq?

The position of attribute-specifiers in the grammar is not consistent; for instance, some declarations can start with an
attribute-specifier but namespace may not.

This causes two kinds of conflicts:

• Declaration rules that do not start with the optional attribute-specifier-seq? conflict with declaration rules that
are allowed to start with it

• In contexts that allow both a declaration or an expression (init-statement, compound-statement, template-
parameter for instance) expression rules (that do not start with the optional attribute-specifier-seq?) are in conflict
with declaration rules.

To help the parser generator, the grammar was modified to allow attribute-specifier-seq? symbols in the following
rules:

alias-declaration:
attribute-specifier-seq? "using" "identifier" attribute-specifier-seq? "="␣

→˓defining-type-id ";"'

opaque-enum-declaration:
attribute-specifier-seq? enum-key attribute-specifier-seq? enum-head-name enum-base? ;

linkage-specification:
attribute-specifier-seq? extern string-literal { declaration-seq? }
attribute-specifier-seq? extern string-literal declaration

using-enum-declaration:
attribute-specifier-seq? using elaborated-enum-specifier ;

c++ 98-14:
using-declaration:
attribute-specifier-seq? using typename? nested-name-specifier unqualified-id ;
attribute-specifier-seq? using :: unqualified-id ;

c++ 17:

1.2. Extra tools 13



Motor

using-declaration:
attribute-specifier-seq? using using-declarator-list ;

named-namespace-definition:
attribute-specifier-seq? inline? namespace attribute-specifier-seq? identifier {␣

→˓namespace-body }

unnamed-namespace-definition:
attribute-specifier-seq? inline? namespace attribute-specifier-seq? { namespace-body }

nested-namespace-definition:
attribute-specifier-seq? namespace enclosing-namespace-specifier :: inline?␣

→˓identifier { namespace-body }

namespace-alias-definition:
attribute-specifier-seq? namespace identifier = qualified-namespace-specifier ;

explicit-specialization:
attribute-specifier-seq? template < > declaration

explicit-instantiation:
attribute-specifier-seq? extern? template declaration

deduction-guide:
attribute-specifier-seq? explicit-specifier? template-name ( parameter-declaration-clause␣

→˓) -> simple-template-id ;

type-parameter:
attribute-specifier-seq? type-parameter-key ...? identifier?
attribute-specifier-seq? type-parameter-key identifier? = type-id
attribute-specifier-seq? type-constraint ...? identifier?
attribute-specifier-seq? type-constraint identifier? = type-id
attribute-specifier-seq? template-head type-parameter-key ...? identifier?
attribute-specifier-seq? template-head type-parameter-key identifier? = id-expression

init-statement:
attribute-specifier-seq? expression-statement

condition:
attribute-specifier-seq? expression

The semantic analyzer is responsible for raising warnings in a later stage.

class-head / elaborated-type-specifier and enum-head / elaborated-enum-specifier

elaborated-type-specifiers and defining-type-specifiers are sometimes both accepted as type-specifiers. This leads to
problems as the rules are very similar and the parsers needs many tokens to disambiguate the two.

The following rules have a lot of overlap but optional symbols force the parser generator to make an early choice:

elaborated-type-specifier:
class-key attribute-specifier-seq? nested-name-specifier? identifier
class-key simple-template-id

(continues on next page)

14 Chapter 1. Motor documentation



Motor

(continued from previous page)

class-key nested-name-specifier template? simple-template-id
...

class-head:
class-key attribute-specifier-seq? class-head-name class-virt-specifier? base-clause?
class-key attribute-specifier-seq? base-clause?

class-head-name:
nested-name-specifier? class-name

The elaborated-enum-specifier syntax is close to, but different from the enum-head.

elaborated-enum-specifier:
enum nested-name-specifier? identifier

enum-head:
enum-key attribute-specifier-seq? enum-head-name? enum-base?

The conflicts disappear if the elaborated-type-specifier rules are amended to accept the same syntax as the class-head.

elaborated-type-specifier:
elaborated-type-specifier : class-key attribute-specifier-seq? class-head-name

class-head:
class-key attribute-specifier-seq? class-head-name class-virt-specifier? base-clause?
class-key attribute-specifier-seq? base-clause?

class-head-name:
nested-name-specifier? class-name

Similarly, the elaborated-enum-specifier rule can be amended to accept the same syntax as enum-head.

elaborated-enum-specifier:
enum-key attribute-specifier-seq? enum-head-name

enum-head:
enum-key attribute-specifier-seq? enum-head-name? enum-base?

1.2.1.3 Static conflict resolution

This section lists the conflicts that are resolved through making explicit choices in the grammar at the point the token
is encountered (i.e. without additional lookahead). The choice is specified by annotating the grammar with priority
attributes.

1.2. Extra tools 15



Motor

template-parameter-list/template-argument-list, >

In a template-parameter-list or template-argument-list, the C++ parser encounters an expression (in the case of a
template-argument-list as a constant-expression, and in the case of a template-parameter-list as a default value of a
template-parameter). The > token could be interpreted as starting a relational-expression, or could be the closing
bracket of the template-parameter-list or template-argument-list.

equality-expression[split:] -> relational-expression
relational-expression -> relational-expression > compare-expression

In a template-parameter-list:

reduce using rule equality-expression[split:] -> relational-expression

template < attribute-specifier-seq? decl-specifier-seq abstract-declarator? =␣
→˓relational-expression >

equality-
→˓expression

and-
→˓expression

␣
→˓exclusive-or-expression

␣
→˓inclusive-or-expression

logical-
→˓and-expression

logical-
→˓or-expression

␣
→˓conditional-expression

␣
→˓assignment-expression

␣
→˓initializer-clause

parameter-
→˓declaration

template-
→˓parameter

template-parameter-
→˓list
template-

→˓head

shift using rule relational-expression -> relational-expression > compare-expression

template < attribute-specifier-seq? decl-specifier-seq abstract-declarator? =␣
→˓relational-expression > compare-expression assignment-operator initializer-clause >

␣
→˓relational-expression

equality-
→˓expression

and-
→˓expression

(continues on next page)

16 Chapter 1. Motor documentation



Motor

(continued from previous page)

␣
→˓exclusive-or-expression

␣
→˓inclusive-or-expression

logical-
→˓and-expression

logical-
→˓or-expression

␣
→˓assignment-expression

␣
→˓initializer-clause

parameter-
→˓declaration

template-
→˓parameter

template-parameter-
→˓list
template-

→˓head

In a template-argument-list:

reduce using rule equality-expression[split:] -> relational-expression

template-name < relational-expression >
equality-expression
and-expression
exclusive-or-expression
inclusive-or-expression
logical-and-expression
logical-or-expression
conditional-expression
constant-expression
template-argument
template-argument-list?

simple-template-id

shift using rule relational-expression -> relational-expression > compare-expression

template-name < relational-expression > compare-expression >
relational-expression
equality-expression
and-expression
exclusive-or-expression
inclusive-or-expression
logical-and-expression
logical-or-expression
conditional-expression
constant-expression
template-argument

(continues on next page)

1.2. Extra tools 17



Motor

(continued from previous page)

template-argument-list?
simple-template-id

The C++ standard disambiguates the template-parameter-list conflict in section 13.2.161. It also disambiguates the
template-argument-list conflict in section 13.3.42. The resolution is to favor a reduce of the relational-expression over
a shift of the > symbol.

selection-statement, else

When parsing nested selection-statements, a conflict arises when the else token is encountered. In the sequence of
symbols shown in the counterexample, it is not specified in the grammar if the else keyword opens the else clause of the
rightmost selection-statement, or if it reduces the rightmost selection-statement and continues the leftmost selection-
statement.

selection-statement -> if constexpr? ( init-statement? condition ) statement else␣
→˓statement
selection-statement -> if constexpr? ( init-statement? condition ) statement

shift using rule selection-statement -> if constexpr ( init-statement condition )␣
→˓statement else statement

if constexpr? ( init-statement? condition ) if constexpr? ( init-statement? condition␣
→˓) statement else statement

selection-
→˓statement

␣
→˓statement
selection-

(continues on next page)

1 When parsing a default template-argument for a non-type template-parameter, the first non-nested > is taken as the end of the template-
parameter-list rather than a greater-than operator.

[Example 9:

template<int i = 3 > 4 > // syntax error
class X { /* ... */ };

template<int i = (3 > 4) > // OK
class Y { /* ... */ };

— end example]
2 When parsing a template-argument-list, the first non-nested > is taken as the ending delimiter rather than a greater-than operator. Similarly,

the first non-nested >> is treated as two consecutive but distinct > tokens, the first of which is taken as the end of the template-argument-list and
completes the template-id.

[Note 2: The second > token produced by this replacement rule can terminate an enclosing template-id construct or it can be part of a different
construct (e.g., a cast). — end note]

[Example 2:

template<int i> class X { /* ... */ };

X< 1>2 > x1; // syntax error
X<(1>2)> x2; // OK

template<class T> class Y { /* ... */ };
Y<X<1>> x3; // OK, same as Y<X<1> > x3;
Y<X<6>>1>> x4; // syntax error
Y<X<(6>>1)>> x5; // OK

— end example]

18 Chapter 1. Motor documentation



Motor

(continued from previous page)

→˓statement

reduce using rule selection-statement -> if constexpr ( init-statement condition )␣
→˓statement

if constexpr? ( init-statement? condition ) if constexpr? ( init-statement? condition␣
→˓) statement else statement

selection-
→˓statement

␣
→˓statement
selection-

→˓statement

selection-statement -> if !? consteval compound-statement else statement
selection-statement -> if !? consteval compound-statement

shift using rule selection-statement -> if consteval compound-statement else statement

if constexpr? ( init-statement? condition ) if !? consteval compound-statement else␣
→˓statement

selection-
→˓statement

␣
→˓statement
selection-

→˓statement

reduce using rule selection-statement -> if !? consteval compound-statement

if constexpr? ( init-statement? condition ) if !? consteval compound-statement else␣
→˓statement

selection-statement
statement

selection-
→˓statement

The C++ standard explicitely excludes the second possibility in section 8.5.23. The conflict is resolved by annotating
the grammar with a priority for the first form of the selection-statement.

3 In the second form of if statement (the one including else), if the first substatement is also an if statement then that inner if statement shall
contain an else part.

1.2. Extra tools 19



Motor

elaborated-enum-specifier / opaque-enum-declaration

The opaque-enum-declaration syntax is the same as a simple-declaration of type elaborated-enum-specifier.

enum-head-name -> identifier
elaborated-enum-specifier -> enum-key identifier

reduce using rule enum-head-name -> identifier

enum-key identifier ;
enum-head-name

opaque-enum-declaration
block-declaration
declaration-statement
statement

reduce using rule elaborated-enum-specifier -> enum-key identifier

enum-key identifier ;
elaborated-enum-specifier
elaborated-type-specifier
type-specifier
defining-type-specifier
decl-specifier
decl-specifier-seq
simple-declaration
block-declaration
declaration-statement
statement

During semantic analysis, some of these valid grammatical constructs will be rejected:

An opaque-enum-declaration declaring an unscoped enumeration shall not omit the enum-base.

In the context of a statement, it is not allowed to forward declare an enumeration. In order to support opaque enum
declarations properly, the parser will discard declaration-statements that only declare an elaborated-enum-specifier.

enum-base / bitfield specifier

In a member declaration, : token can introduce either a bitfield specifier of a member, or a enum-base of an opaque-
enum-declaration.

enum-base? -> : type-specifier-seq
elaborated-enum-specifier -> enum-key attribute-specifier-seq? enum-head-name

shift using rule enum-base? -> : type-specifier-seq

attribute-specifier-seq? enum-key attribute-specifier-seq? enum-head-name : type-
→˓specifier-seq ;

enum-base?
→˓

opaque-enum-
(continues on next page)

20 Chapter 1. Motor documentation



Motor

(continued from previous page)

→˓declaration
member-

→˓declaration

reduce using rule elaborated-enum-specifier -> enum-key attribute-specifier-seq? enum-
→˓head-name

attribute-specifier-seq? decl-specifier continue-decl-specifier-seq enum-key attribute-
→˓specifier-seq? enum-head-name :␣
→˓constant-expression brace-or-equal-initializer? ;

elaborated-enum-
→˓specifier attribute-specifier-seq? attribute-specifier-seq?

elaborated-type-
→˓specifier member-
→˓declarator

type-
→˓specifier member-
→˓declarator-list?

defining-type-
→˓specifier

decl-
→˓specifier

decl-specifier-
→˓seq

decl-specifier-
→˓seq
member-

→˓declaration

The C++ standard specifies which resolution to apply in section 9.7.14.

base-clause / bitfield specifier

In a member declaration, a : token can introduce either a bit-field specifier of a member, or a base-clause of a class-
specifier.

elaborated-type-specifier -> class-key attribute-specifier-seq? class-head-name
base-clause? -> : base-specifier-list

reduce using rule elaborated-type-specifier -> class-key attribute-specifier-seq? class-
→˓head-name

attribute-specifier-seq? class-key attribute-specifier-seq? class-head-name ␣
→˓ : constant-expression brace-or-equal-
→˓initializer? ;

elaborated-type-specifier attribute-
(continues on next page)

4 A : following enum nested-name-specifier? identifier within the decl-specifier-seq of a member-declaration is parsed as part of an
enum-base.

[Note 1: This resolves a potential ambiguity between the declaration of an enumeration with an enum-base and the declaration of an unnamed
bit-field of enumeration type.]

1.2. Extra tools 21



Motor

(continued from previous page)

→˓specifier-seq? attribute-specifier-seq?
type-specifier ␣

→˓ member-
→˓declarator

defining-type-specifier ␣
→˓ member-declarator-list?
→˓

decl-specifier
decl-specifier-

→˓seq
member-

→˓declaration

shift using rule base-clause? -> : base-specifier-list

attribute-specifier-seq? class-key attribute-specifier-seq? class-head-name : base-
→˓specifier-list { member-specification? } continue-decl-specifier-seq decl-specifier-
→˓seq member-declarator-list? ;

base-
→˓clause?

class-
→˓head

class-
→˓specifier

defining-type-
→˓specifier

decl-
→˓specifier

decl-specifier-
→˓seq
member-

→˓declaration

Unlike the enum-base / bitfield specifier conflict, there is no mention of this ambiguity in the standard. The reason is
that bit-fields are only allowed on integral and enumeration types. The grammar can be adjusted to reject the bit-field
option.

new-expression, { and assignment-expression, =

The conflict arises after either new-expression, or a conditional-expression has been parsed. The following {/= token
will be opening an initializer-clause. The counterexample context shows that when parsing a member-declarator, if the
bitfield specifier (a constant-expression) expands to a new-expression or a conditional-expression, there is a conflict
between matching the initializer-clause to the expression or to the member-declarator.

braced-init-list -> { initializer-list? ,? }
braced-init-list -> { designated-initializer-list ,? }
new-expression -> ::? new new-placement? new-type-id
new-expression -> ::? new new-placement? ( type-id )

22 Chapter 1. Motor documentation



Motor

shift using rule braced-init-list -> { initializer-list? ,? }

identifier? attribute-specifier-seq? : ::? new new-placement? ( type-id ) {␣
→˓(designated-)initializer-list? ,? }

braced-init-
→˓list

new-
→˓initializer

new-
→˓expression

unary-
→˓expression

cast-
→˓expression

pm-
→˓expression

multiplicative-
→˓expression

additive-
→˓expression

shift-
→˓expression

compare-
→˓expression

relational-
→˓expression

equality-
→˓expression

and-
→˓expression

exclusive-or-
→˓expression

inclusive-or-
→˓expression

logical-and-
→˓expression

logical-or-
→˓expression

conditional-
→˓expression

constant-
→˓expression
member-

→˓declarator

reduce using rule new-expression -> ::? new new-placement new-type-id

identifier? attribute-specifier-seq? : ::? new new-placement? new-type-id { }
new-expression braced-init-

→˓list
unary-expression brace-or-

→˓equal-initializer
cast-expression

(continues on next page)

1.2. Extra tools 23



Motor

(continued from previous page)

pm-expression
multiplicative-expression
additive-expression
shift-expression
compare-expression
relational-expression
equality-expression
and-expression
exclusive-or-expression
inclusive-or-expression
logical-and-expression
logical-or-expression
conditional-expression
constant-expression

member-
→˓declarator

assignment-operator -> =
conditional-expression -> logical-or-expression

shift using rule assignment-operator -> =

attribute-specifier-seq? : logical-or-expression ? expression : logical-or-expression ␣
→˓= initializer-clause brace-or-equal-initializer?

␣
→˓assignment-operator

assignment-
→˓expression

conditional-
→˓expression

constant-
→˓expression
member-

→˓declarator

reduce using rule conditional-expression -> logical-or-expression

attribute-specifier-seq? : logical-or-expression ? expression : logical-or-expression ␣
→˓ = initializer-clause

conditional-expression␣
→˓brace-or-equal-initializer?

assignment-expression
conditional-expression
constant-expression

member-
→˓declarator

The conflict is resolved in the C++ standard in section 11.4.15 by assigning a priority to shifting into the brace-init-list.
5 In a member-declarator for a bit-field, the constant-expression is parsed as the longest sequence of tokens that could syntactically form a

constant-expression.

24 Chapter 1. Motor documentation



Motor

nested-name-specifier, ::

The :: being used both as a binary operator (name lookup operator) and a unary operator (root namespace name
lookup), there is an ambiguity when two qualified names are allowed to follow each other. When encountering a ::
token, it is possible to continue a previous qualified name, or close the previous qualified name and start a new name
lookup in the root namespace.

simple-type-specifier -> type-name
nested-name-specifier -> type-name ::

reduce using rule simple-type-specifier -> type-name

type-name attribute-specifier-seq? :: * attribute-
→˓specifier-seq? cv-qualifier-seq? )
simple-type-specifier nested-name-specifier
type-specifier ptr-

→˓operator
type-specifier-seq ptr-abstract-

→˓declarator
abstract-declarator?

→˓

type-
→˓id

shift using rule nested-name-specifier -> type-name ::

type-name :: template? template-name attribute-specifier-seq? abstract-
→˓declarator? )
nested-name-specifier
simple-type-specifier
type-specifier
type-specifier-seq
type-

→˓id

The resolution is to continue the previous name lookup. There does not seem to be any mention of this in the C++
standard, but compilers seem to implement it this way.

conversion-type-id, attribute-specifier-seq

The counter-examples show a context where a conversion-type-id can be directly followed by an attribute-specifier-
sequence. Since the conversion-type-id can also end with an attribute-specifier-sequence, there is an ambiguity as to
where the two sequences are split.

The example shown below is with the * operator and [[ token. Variations of the conflict exist for all ptr-operator
constructs, and all attribute-specifiers.

attribute-specifier -> [[ attribute-using-prefix? attribute-list ] ]
ptr-operator -> *

struct S {
int z : 1 || new int { 0 }; // OK, brace-or-equal-initializer is absent

};

1.2. Extra tools 25



Motor

shift using rule attribute-specifier -> [[ attribute-using-prefix? attribute-list ] ]

operator type-specifier-seq && [[ attribute-using-prefix? attribute-list ] ]
attribute-specifier
attribute-specifier-seq

ptr-operator
conversion-declarator

conversion-type-id
conversion-function-id
unqualified-id
id-expression
declarator-id
noptr-declarator

reduce using rule ptr-operator -> *

operator type-specifier-seq * [[ attribute-using-prefix?␣
→˓attribute-list ] ]

ptr-operator attribute-
→˓specifier

conversion-declarator attribute-specifier-
→˓seq

conversion-type-id
conversion-function-id
unqualified-id
id-expression
declarator-id
noptr-

→˓declarator

According to the standard in section 11.4.8.36, the attribute specifier sequence is consumed by the conversion-type-id
by applying a priority on shifting the attribute-specifiers and cv-qualifiers over the reductions of ptr-operators.

6 The conversion-type-id in a conversion-function-id is the longest sequence of tokens that could possibly form a conversion-type-id.
[Note 1: This prevents ambiguities between the declarator operator * and its expression counterparts.
[Example 3:

&ac.operator int*i; // syntax error:
// parsed as: &(ac.operator int *)i
// not as: &(ac.operator int)*i

The * is the pointer declarator and not the multiplication operator. — end example]
This rule also prevents ambiguities for attributes.

[Example 4:

operator int [[noreturn]] (); // error: noreturn attribute applied to a type

—end example]

— end note]

26 Chapter 1. Motor documentation



Motor

explicit-specifier /noexcept-specifier, (

A conflict arises in all declarations (narrowed down to one counter-example here) when encountering the ( token after
the explicit keyword or the noexcept keyword:

explicit-specifier -> explicit ( constant-expression )
explicit-specifier -> explicit

reduce using rule explicit-specifier -> explicit

attribute-specifier-seq explicit ( ptr-declarator ) parameters-and-
→˓qualifiers trailing-return-type declarator function-body

explicit-specifier noptr-declarator
function-specifier␣

→˓declarator
decl-specifier
decl-specifier-seq

function-
→˓definition
␣
→˓declaration

shift using rule explicit-specifier -> explicit ( constant-expression )

attribute-specifier-seq explicit ( constant-expression ) declarator function-body
explicit-specifier
function-specifier
decl-specifier
decl-specifier-seq

function-definition
declaration

noexcept-specification -> noexcept ( constant-expression )
noexcept-specification -> noexcept

reduce using rule noexcept-specification -> noexcept

noptr-declarator ( parameter-declaration-clause ) cv-qualifier-seq? ref-qualifier?␣
→˓noexcept ( expression-list )

␣
→˓noexcept-specification attribute-specifier-seq? initializer?

␣
→˓exception-specification?

parameters-and-
→˓qualifiers
noptr-

→˓declarator
ptr-

→˓declarator
␣
→˓declarator

(continues on next page)

1.2. Extra tools 27



Motor

(continued from previous page)

init-
→˓declarator

shift using rule noexcept-specification -> noexcept ( constant-expression )

noptr-declarator ( parameter-declaration-clause ) cv-qualifier-seq? ref-qualifier?␣
→˓noexcept ( constant-expression ) attribute-specifier-seq? trailing-return-type␣
→˓initializer?

␣
→˓noexcept-specification

␣
→˓exception-specification?

parameters-and-
→˓qualifiers
␣
→˓declarator
init-

→˓declarator

The standard disambiguates the conflict for explicit in section 9.2.37 and for noexcept in section 14.5.28. In both
cases, The grammar conflict is resolved by prioritizing the shift.

Operators new, new[], delete, delete[]

When using the operators new and delete as declarator-ids in a declaration, or as unqualified-ids in an expression, it
can be followed by the array operator [. It is then ambiguous if the array operator is specifying the array form of the
new/delete operators or a subscript expression or an array declaration.

overloadable-operator -> new [ ]
overloadable-operator -> new

In an expression:

shift using rule overloadable-operator -> new [ ]

operator new [ ]
overloadable-operator

operator-function-id
unqualified-id
id-expression
primary-expression
postfix-expression

reduce using rule overloadable-operator -> new

operator new [ expr-or-braced-init-list ]
overloadable-operator

operator-function-id
(continues on next page)

7 A ( token that follows explicit is parsed as part of the explicit-specifier.
8 A ( token that follows noexcept is part of the noexcept-specifier and does not commence an initializer.

28 Chapter 1. Motor documentation



Motor

(continued from previous page)

unqualified-id
id-expression
primary-expression
postfix-expression
postfix-expression

In a declaration:

shift using rule overloadable-operator -> new [ ]

operator new [ ]
overloadable-operator

operator-function-id
unqualified-id
id-expression
declarator-id
noptr-declarator

reduce using rule overloadable-operator -> new

operator new [ constant-expression? ] attribute-specifier-seq?
overloadable-operator

operator-function-id
unqualified-id
id-expression
declarator-id
noptr-declarator
noptr-declarator

overloadable-operator -> delete [ ]
overloadable-operator -> delete

In an expression:

shift using rule overloadable-operator -> delete [ ]

operator delete [ ]
overloadable-operator

operator-function-id
unqualified-id
id-expression
primary-expression
postfix-expression

reduce using rule overloadable-operator -> delete

operator delete [ expr-or-braced-init-list ]
overloadable-operator

operator-function-id
unqualified-id

(continues on next page)

1.2. Extra tools 29



Motor

(continued from previous page)

id-expression
primary-expression
postfix-expression
postfix-expression

In a declaration:

shift using rule overloadable-operator -> delete [ ]

operator delete [ ]
overloadable-operator

operator-function-id
unqualified-id
id-expression
declarator-id
noptr-declarator

reduce using rule overloadable-operator -> delete

operator delete [ constant-expression? ] attribute-specifier-seq?
overloadable-operator

operator-function-id
unqualified-id
id-expression
declarator-id
noptr-declarator
noptr-declarator

There does not seem to be any priority defined in the C++ standard, but in all similar cases the standard de-
fines the operator-id as the longest sequence of valid tokens, and major compilers resolve the conflict by using the
new[]/delete[] version.

int main()
{

return &::operator new[0] ? 0 : 1;
}

Using GCC:

main.cc: In function ‘int main()’:
main.cc:3:28: error: expected ‘]’ before numeric constant

3 | return &::operator new[0] ? 0 : 1;

Using Clang:

main.cc:3:28: error: expected ']'
return &::operator new[0] ? 0 : 1;

30 Chapter 1. Motor documentation



Motor

Operators delete, delete[] and lambda-expression

In a delete expression, an array subscript token [ could introduce either the array form of the delete-expression or open
a new lambda-expression.

delete [ ] cast-expression
lambda-introducer -> [ ]

shift using rule delete [ ] cast-expression

delete [ ] cast-expression
delete-expression

reduce using rule lambda-introducer -> [ ]

delete [ ] lambda-declarator
lambda-introducer
lambda-expression
primary-expression
postfix-expression
unary-expression
cast-expression

delete-expression

There does not seem to be any priority defined in the C++ standard, but just as when resolving Operators new, new[],
delete, delete[] the parser will resolve by using the delete[] version.

int main()
{

delete []() { return (int*) 0; }();
}

Using GCC:

main.cc: In function ‘int main()’:
main.cc:3:15: error: expected primary-expression before ‘)’ token

3 | delete []() { return (int*) 0; }();
| ^

Using Clang:

main.cc:3:5: error: '[]' after delete interpreted as 'delete[]'; add parentheses to␣
→˓treat this as a lambda-expression

delete []() { return (int*) 0; }();
^~~~~~~~~

( )

The conflict occurs only at the closing subscript token ], which indicates the parser will succeed parsing a delete-
expression of the result of a lambda-expression provided that the lambda-introducer is not an empty capture. Interest-
ingly, GCC and Clang disagree on this case.

int main()
{

(continues on next page)

1.2. Extra tools 31



Motor

(continued from previous page)

delete [&]() { return (int*) 0; }();
}

Using GCC:

main.cc: In function ‘int main()’:
main.cc:3:13: error: expected ‘]’ before ‘&’ token

3 | delete [&]() { return (int*) 0; }();
| ^
| ]

main.cc:3:14: error: expected primary-expression before ‘]’ token
3 | delete [&]() { return (int*) 0; }();
| ^

main.cc:3:39: error: expected primary-expression before ‘)’ token
3 | delete [&]() { return (int*) 0; }();

Using Clang successfully compiles.

conversion-declarator, binary operators

When using a conversion-function-id as an unqualified-id in an expression, the parser encounters a conflict when
encountering tokens that are used either as ptr-operators or binary operators (&, &&, *). The token can be interpreted
as either continuing the conversion-type-id, or starting a binary operation using the shorter version of the conversion-
type-id.

ptr-operator -> * attribute-specifier-seq? cv-qualifier-seq?
conversion-declarator? ->

shift using rule ptr-operator -> * attribute-specifier-seq? cv-qualifier-seq?

operator type-specifier-seq * attribute-specifier-seq? cv-qualifier-seq? conversion-
→˓declarator?

ptr-operator
conversion-declarator?

→˓

conversion-type-
→˓id
conversion-function-

→˓id
unqualified-

→˓id
id-

→˓expression
primary-

→˓expression
postfix-

→˓expression
unary-

→˓expression
cast-

→˓expression
(continues on next page)

32 Chapter 1. Motor documentation



Motor

(continued from previous page)

pm-
→˓expression
multiplicative-

→˓expression

reduce using rule conversion-declarator? ->

operator type-specifier-seq * pm-expression
conversion-declarator?

conversion-type-id
conversion-function-id
unqualified-id
id-expression
primary-expression
postfix-expression
unary-expression
cast-expression
pm-expression
multiplicative-expression
multiplicative-expression

The C++ standard disambiguates this case in section 11.4.8.39 by prioritizing a shift of the ptr-operator over reducing
the conversion-type-id.

new-type-id, binary operators

In a similar way to conversion-declarator, binary operators, a new-expression can appear as a left operand of a
multiplicative-expression causing a conflict when encountering the * token.

ptr-operator -> * attribute-specifier-seq? cv-qualifier-seq?
new-declarator -> ptr-operator

shift using rule ptr-operator -> * attribute-specifier-seq? cv-qualifier-seq?

::? new type-specifier-seq ptr-operator * attribute-specifier-seq? cv-qualifier-seq?␣
→˓new-initializer?

ptr-operator
new-declarator

new-declarator
new-type-id

new-
→˓expression
unary-

→˓expression
(continues on next page)

9 The conversion-type-id in a conversion-function-id is the longest sequence of tokens that could possibly form a conversion-type-id.
[Note 1: This prevents ambiguities between the declarator operator * and its expression counterparts.

&ac.operator int*i; // syntax error:
// parsed as: &(ac.operator int *)i
// not as: &(ac.operator int)*i

The * is the pointer declarator and not the multiplication operator. — end example]

1.2. Extra tools 33



Motor

(continued from previous page)

cast-
→˓expression
pm-

→˓expression
multiplicative-

→˓expression

reduce using rule new-declarator -> ptr-operator

::? new type-specifier-seq ptr-operator new-initializer? * pm-expression
new-declarator

new-type-id
new-expression
unary-expression
cast-expression
pm-expression
multiplicative-expression
multiplicative-expression

The standard specifies in section 7.6.2.810 by prioritizing a shift of the ptr-operator over reducing the new-type-id.

destructor, unary ~ operator

Everywhere in the grammar that allows an expression, starting with a ~ token can lead to two different expansions,
using a destructor name as an unqualified-id or building a unary-expression with the ~ operator.

enum-name -> identifier
typedef-name -> identifier
class-name -> identifier
template-name -> identifier
unary-operator -> ~

shift using rule enum-name -> identifier

~ identifier
enum-name
type-name

unqualified-id
id-expression
primary-expression
postfix-expression
unary-expression

shift using rule typedef-name -> identifier
(continues on next page)

10 The new-type-id in a new-expression is the longest possible sequence of new-declarators.
[Note 3: This prevents ambiguities between the declarator operators &, &&, *, and [] and their expression counterparts. — end note]
[Example 2:

new int * i; // syntax error: parsed as (new int*) i, not as (new int)*i

The * is the pointer declarator and not the multiplication operator. — end example]

34 Chapter 1. Motor documentation



Motor

(continued from previous page)

~ identifier
typedef-name
type-name

unqualified-id
id-expression
primary-expression
postfix-expression
unary-expression

shift using rule class-name -> identifier

~ identifier
class-name
type-name

unqualified-id
id-expression
primary-expression
postfix-expression
unary-expression

shift using rule template-name -> identifier

~ identifier < template-argument-list? >
template-name
simple-template-id
typedef-name
type-name

unqualified-id
id-expression
primary-expression
postfix-expression
unary-expression

reduce using rule unary-operator -> ~

~ identifier braced-init-list
unary-operator template-name

simple-type-specifier
postfix-expression
unary-expression
cast-expression

unary-expression

decltype-specifier[split:] -> decltype ( expression )
unary-operator -> ~

shift using rule decltype-specifier[split:] -> decltype ( expression )

~ decltype ( expression )
(continues on next page)

1.2. Extra tools 35



Motor

(continued from previous page)

decltype-specifier
unqualified-id
id-expression
primary-expression
postfix-expression
unary-expression

reduce using rule unary-operator -> ~

~ decltype ( auto ) braced-init-list
unary-operator placeholder-type-specifier

simple-type-specifier
postfix-expression
unary-expression
cast-expression

unary-expression

The conflict is resolved in the C++ standard in section 7.6.2.211 by prioritizing the unary-operator rule.

constraint-logical-and-expression, &&

In the grammar, a function declaration can sometimes only consist of a declarator without return type in order to allow
constructors, destructors and cast operators. The grammar is very generic and allows the rule function-definition
: declarator function-body. It means the sequence && identifier { } is grammatically correct but is re-
jected during the semantic analysis.

A function declaration/definition can also appear in a template-declaration and have constraints attached to it, which
can use the && operator.

constraint-logical-or-expression -> constraint-logical-or-expression || constraint-
→˓logical-and-expression
constraint-logical-and-expression -> constraint-logical-and-expression && constraint-
→˓primary-expression

reduce using rule constraint-logical-or-expression -> constraint-logical-or-expression␣
→˓|| constraint-logical-and-expression

attribute-specifier-seq? extern? template < template-parameter-list > requires␣
→˓constraint-logical-or-expression || constraint-logical-and-expression ␣
→˓ && attribute-specifier-seq? ptr-declarator function-body

␣
→˓constraint-logical-or-expression attribute-
→˓specifier-seq? ptr-operator

requires-
→˓clause ␣
→˓ ptr-declarator

(continues on next page)

11 There is an ambiguity in the grammar when ~ is followed by a type-name or decltype-specifier. The ambiguity is resolved by treating ~ as the
unary complement operator rather than as the start of an unqualified-id naming a destructor.

[Note 6: Because the grammar does not permit an operator to follow the ., ->, or :: tokens, a ~ followed by a type-name or decltype-specifier in
a member access expression or qualified-id is unambiguously parsed as a destructor name. — end note]

36 Chapter 1. Motor documentation



Motor

(continued from previous page)

template-
→˓head ␣
→˓ declarator

␣
→˓ function-
→˓definition

␣
→˓ noexport-
→˓declaration

␣
→˓ ␣
→˓declaration
template-

→˓declaration

shift using rule constraint-logical-and-expression -> constraint-logical-and-expression ␣
→˓&& constraint-primary-expression

attribute-specifier-seq? extern? template < template-parameter-list > requires␣
→˓constraint-logical-or-expression || constraint-logical-and-expression && constraint-
→˓primary-expression declaration

␣
→˓ constraint-logical-and-
→˓expression

␣
→˓constraint-logical-or-
→˓expression

requires-
→˓clause

template-
→˓head
template-

→˓declaration

Choosing the semantically invalid rule would also shadow the valid constraint-logical-and-expression, so the parser
uses the shift clause.

global-module-fragment

In the C++ standard, the C++ grammar defines the global-module-fragment to be a sequence of declarations following
the global module specifier. The global-module-fragment can be followed by another sequence of declarations, but the
note states

Prior to phase 4 of translation, only preprocessing directives can appear in the declaration-seq

global-module-fragment -> module ; declaration-seq?
export-declaration -> export { noexport-declaration-seq? }
export-declaration -> export noexport-declaration
export-declaration -> export module-import-declaration

1.2. Extra tools 37



Motor

reduce using rule global-module-fragment -> module ; declaration-seq?

module ; declaration-seq? export module module-name ; declaration-seq? private-module-
→˓fragment?
global-module-fragment module-declaration
translation-

→˓unit

shift using rule export-declaration -> export module-import-declaration

module ; declaration-seq export module-import-declaration module-declaration
export-declaration
declaration

declaration-seq
global-module-fragment
translation-unit

shift using rule export-declaration -> export { noexport-declaration-seq? }

module ; declaration-seq export { noexport-declaration-seq? } module-declaration
export-declaration
declaration

declaration-seq
global-module-fragment
translation-unit

shift using rule export-declaration -> export noexport-declaration

module ; declaration-seq export noexport-declaration module-declaration
export-declaration
declaration

declaration-seq
global-module-fragment
translation-unit

Since the parser is parsing non-preprocessed source files, it is safe to annotate the grammar to reduce.

requirement-expression, nested-requirement

In places allowing a requirement, the requires keyword leads to two possible expansions: it could introduce a
requirement-expression as part of a simple-requirement, or it could start a nested-requirement. The possible expan-
sions lead to conflicts after a few tokens have been parsed. The standard indicates that the requires keyword in
this situation always introduces a nested-requirement. It is therefore possible to resolve all conflicts by preferring the
nested-requirement option. This would lead to a lot of annotations spread across the grammar.

In order to simplify the grammar, it is modified to introduce an earlier conflict, an empty production before the
requires keyword. This empty production causes a shift-reduce conflict that hides all subsequent conflicts in the
expansion. Resolving this single conflicts removes the possibility of expanding a requirement-expression altogether,
hiding both the ambiguous constructs but also the unambiguous ones as required by the standard.

requires-disambiguation ->
nested-requirement -> requires constraint-expression ;

38 Chapter 1. Motor documentation



Motor

shift using rule nested-requirement -> requires constraint-expression ;

requires constraint-expression ;
nested-requirement
requirement

reduce using rule requires-disambiguation ->

requires requirement-parameter-list? requirement-body␣
→˓assignment-operator initializer-clause ;
requires-disambiguation
requires-expression
primary-expression
postfix-expression
unary-expression
cast-expression
pm-expression
multiplicative-expression
additive-expression
shift-expression
compare-expression
relational-expression
equality-expression
and-expression
exclusive-or-expression
inclusive-or-expression
logical-and-expression
logical-or-expression
assignment-

→˓expression
␣
→˓expression
simple-

→˓requirement
␣
→˓requirement

In this modified grammar, resolving as shift prioritizes the nested-requirement over a requires-expression.

id-expression in a template-argument

The C++ grammar rules list three valid template arguments:

• a constant-expression

• a type-id

• an id-expression

Constant expressions are not only constant values; these are expressions that can be computed and reduced to a con-
stant. For instance, 1 + 1 is a constant expression in C++. This computation is actually performed during semantic
analysis; the grammar does not yet differentiate expressions from constant-expressions. At the grammar level, 1 + x
is a constant-expression. During semantic analysis, 1 + x is a constant-expression if x is a constant.

1.2. Extra tools 39



Motor

Since the grammar allows id-expressions as constant-expressions, it means that the third rule above is redundant and
already covered in rule 1.

primary-expression -> id-expression
template-argument -> id-expression

reduce using rule primary-expression -> id-expression

template-name < id-expression >
primary-expression
postfix-expression
unary-expression
cast-expression
pm-expression
multiplicative-expression
additive-expression
shift-expression
compare-expression
relational-expression
equality-expression
and-expression
exclusive-or-expression
inclusive-or-expression
logical-and-expression
logical-or-expression
conditional-expression
constant-expression
template-argument
template-argument-list?

simple-template-id

reduce using rule template-argument -> id-expression

template-name < id-expression >
template-argument
template-argument-list?

simple-template-id

In this case the second possibility is ignored by the parser.

export-declaration, export module-import-declaration

The grammar accepts two ways of exporting a module-import-declaration. The module-import-declaration could first
be reduced into a declaration, then the general rule export-declaration : export declaration applies. Alter-
natively, the rule export-declaration : export module-import-declaration can be applied directly, short-
cutting the intermediate reduction:

declaration -> module-import-declaration
export-declaration -> export module-import-declaration

40 Chapter 1. Motor documentation



Motor

reduce using rule declaration -> module-import-declaration

export module-import-declaration
declaration

export-declaration
declaration

reduce using rule export-declaration -> export module-import-declaration

export module-import-declaration
export-declaration
declaration

The standard forbids in section 10.212 to reduce the module-import-declaration into a declaration. The other cases
described in the standard do not cause additional syntax conflicts, so the restrictions can be applied during the semantic
analysis in order to emit better error messages.

1.2.1.4 Dynamic conflict resolution

This section lists the conflicts that can’t be decided with the next lookahead. The resolution depends on information
that is not available to the parser at the moment it has to make a decision. The parser then splits parsing into two or
more branches that will be resolved at a later point.

The parser will continue to maintain several branches until either the lookaheads generate parse errors in some of the
tentative branches, or the branches reduce in the same state and the state can execute a merge action.

There are two possible outcomes:

• The parse will naturally return to one possibility after a few tokens have been parsed. When the grammar requires
additional tokens to disambiguate, the parser simply keep all options alive.

• The parse will produce two or more valid reductions. Those reductions need to be merged into a single production
as early as possible in order to reduce parsing time; as long as there are two options available to the parser, it
will have to maintain both in parallel. Since there are a few ambiguities that can lead to further ambiguities, the
combination of options can quickly increase.

class-name, enum-name, typedef-name in a type-name

When expecting a type-name, an identifier could be interpreted as either a class-name, an enum-name, or a typedef-
name. While it would be possible to let the parser handle this as a dynamic conflict, this type of conflict is so frequent
that it causes significant overhead during parsing.

The rules were amended to expand all class-name, enum-name, or typedef-name references into identifier references.
12 The declaration or declaration-seq of an export-declaration shall not contain an export-declaration or module-import-declaration.

1.2. Extra tools 41



Motor

declarator, decl-specifier

In a simple-declaration, an identifier can be part of either the decl-specifier-seq (as a type-specifier) or as part of
the declarator (as a qualified-id or unqualified-id). There is not enough information at the moment the identifier
is encountered to make that decision, so the parser attempts to continue both versions. We do know however that the
decl-specifier-seq can only contain one type-specifier, so if a decl-specifier-seq already contains a type-specifier of
some sort, then the identifier must be considered part of the declarator.

typedef X int;

decl-specifier-seq
decl-specifier identifier
unsigned X ;
// unsigned is enough for a type, therefore the next identifier
// is treated as part of the declarator

During reduction, if a decl-specifier-seq is constructed by adding a second type-specifier, the reduction rule raises a
SyntaxError to abort the parsing of that branch.

template-id, <

The conflict arises when encountering the < token. Depending on the resolution of the entity in front of the < token, it
could be part of a template-id or a relational-expression.

unqualified-id -> literal-operator-id
template-id -> literal-operator-id < template-argument-list? >

reduce using rule unqualified-id -> literal-operator-id

literal-operator-id < compare-expression
unqualified-id
id-expression
primary-expression
postfix-expression
unary-expression
cast-expression
pm-expression
multiplicative-expression
additive-expression
shift-expression
compare-expression
relational-expression
relational-expression

shift using rule template-id -> literal-operator-id < template-argument-list >

literal-operator-id < template-argument-list? >
template-id
unqualified-id
id-expression
primary-expression
postfix-expression

(continues on next page)

42 Chapter 1. Motor documentation



Motor

(continued from previous page)

unary-expression
cast-expression
pm-expression
multiplicative-expression
additive-expression
shift-expression
compare-expression
relational-expression

The parser explores both solutions as there is no way to know which path is correct until semantic analysis. There are
many solutions to this conflict; the conflict can include the , token as either a delimiter for the template argument, or
a comma-separated expression, or anywhere where type-list are expected:

struct A : B< Y<1>, Z<2>
// A has one parent class: B< Y<1>, (Z<2) >
// or two parent classes: B< (Y<1) > and Z<2>

{
};

The parser creates a split (which often leads to subsequent splits) and will attempt merges in several rules:

• expression

• constant-expression

• cast-expression

• postfix-expression

• relational-expression

• shift-expression

• fold-expression

• constraint-expression

• template-argument-list

• base-specifier-list

• type-id-list of a dynamic-exception-specification

Unfortunately many of those create valid (although unlikely) possibilities that are merged in an ambiguous parse tree
node in the abstract syntax tree. A semantic pass can then discard the invalid possibilities when the identifier can
be resolved.

variadic-parameter-list, pack-declarator

declarator-id -> ... id-expression
noptr-abstract-pack-declarator -> ...
abstract-declarator?[split:declarator_end] ->

shift using rule declarator-id -> ... id-expression

(continues on next page)

1.2. Extra tools 43



Motor

(continued from previous page)

attribute-specifier-seq? decl-specifier-seq ... id-expression attribute-specifier-seq?
→˓ parameters-and-qualifiers trailing-return-type , variadic-parameter-list

declarator-id
noptr-declarator
␣

→˓declarator
parameter-

→˓declaration
parameter-declaration-

→˓list
parameter-declaration-

→˓clause

shift using rule noptr-abstract-pack-declarator -> ...

attribute-specifier-seq? decl-specifier-seq ... , variadic-
→˓parameter-list

noptr-abstract-pack-declarator
abstract-pack-declarator

parameter-declaration
parameter-declaration-list
parameter-declaration-

→˓clause

reduce using rule abstract-declarator?[split:declarator_end] ->

attribute-specifier-seq? decl-specifier-seq ...
abstract-declarator? variadic-parameter-

→˓list?
parameter-declaration
parameter-declaration-list?
parameter-declaration-

→˓clause

The C++ describes this ambiguity in section 9.3.4.6[#]. The logic cannot be implemented at the syntax analysis step
so both options are accepted until the semantic analysis.

primary-expression, pure-specifier / bitfield declaration, mem-initializer / compound-statement,
brace-or-equal-initializer

There are three tokens that can introduce either a function definition or an initializer:

• { can introduce a function body or a brace initializer:

attribute-specifier-seq? decl-specifier-seq? declarator { statement-seq?␣
→˓}

compound-
→˓statement

function-
→˓body

(continues on next page)

44 Chapter 1. Motor documentation



Motor

(continued from previous page)

function-
→˓definition
␣
→˓declaration

attribute-specifier-seq? decl-specifier-seq? declarator { } ␣
→˓ ;

braced-init-list
brace-or-equal-

→˓initializer
␣

→˓initializer
init-

→˓declarator
init-declarator-

→˓list
simple-

→˓declaration
block-

→˓declaration
␣
→˓declaration

• = can introduce an initializer or a pure specifier:

attribute-specifier-seq? decl-specifier-seq? declarator =␣
→˓integer-literal ;

declarator-function-body␣
→˓pure-specifier

member-
→˓declarator

member-declarator-
→˓list
member-

→˓declaration

attribute-specifier-seq? decl-specifier-seq? declarator = initializer-
→˓clause ;

brace-or-equal-
→˓initializer

␣
→˓initializer

init-
→˓declarator

init-declarator-
→˓list

(continues on next page)

1.2. Extra tools 45



Motor

(continued from previous page)

simple-
→˓declaration
block-

→˓declaration
␣
→˓declaration

• : can introduce a bitfield or a constructor initializer

attribute-specifier-seq? decl-specifier-seq? declarator : begin-ctor-
→˓initializer mem-initializer-list compound-statement

ctor-
→˓initializer

function-
→˓body
function-

→˓definition
member-

→˓declaration

attribute-specifier-seq? decl-specifier-seq? declarator : begin-bitfield␣
→˓constant-expression ;

member-
→˓declarator

member-declarator-
→˓list
member-

→˓declaration

We can however avoid parsing both branches by looking at the declarator. If the declarator is a method, we can can
discard the initializer branch. If it is not a method then we can discard the function body branch.

An empty production is inserted after the declarator has been parsed; this causes a conflict, which causes a split.
During the reduction of the empty production, we can raise a SyntaxError to discard the branch if the declarator is
not a method declarator.

typename-specifier, typename-parameter

enum-name -> identifier
namespace-alias -> identifier
namespace-name -> identifier
typedef-name -> identifier
class-name -> identifier
template-name -> identifier
type-parameter-key -> typename

46 Chapter 1. Motor documentation



Motor

shift using rule enum-name -> identifier

template-parameter-list , attribute-specifier-seq? typename identifier :: ␣
→˓template? simple-template-id continue-decl-specifier-seq decl-specifier-seq abstract-
→˓declarator?

enum-name
type-name
nested-name-specifier

typename-
→˓specifier

type-
→˓specifier

defining-type-
→˓specifier

decl-
→˓specifier

decl-specifier-
→˓seq

parameter-
→˓declaration

template-
→˓parameter
template-parameter-

→˓list

shift using rule namespace-alias -> identifier

template-parameter-list , attribute-specifier-seq? typename identifier :: ␣
→˓template? simple-template-id continue-decl-specifier-seq decl-specifier-seq abstract-
→˓declarator?

namespace-alias
namespace-name
nested-name-specifier

typename-
→˓specifier

type-
→˓specifier

defining-type-
→˓specifier

decl-
→˓specifier

decl-specifier-
→˓seq

parameter-
→˓declaration

template-
→˓parameter
template-parameter-

→˓list

shift using rule namespace-name -> identifier

template-parameter-list , attribute-specifier-seq? typename identifier :: ␣
(continues on next page)

1.2. Extra tools 47



Motor

(continued from previous page)

→˓template? simple-template-id continue-decl-specifier-seq decl-specifier-seq abstract-
→˓declarator?

namespace-name
nested-name-specifier

typename-
→˓specifier

type-
→˓specifier

defining-type-
→˓specifier

decl-
→˓specifier

decl-specifier-
→˓seq

parameter-
→˓declaration

template-
→˓parameter
template-parameter-

→˓list

shift using rule typedef-name -> identifier

template-parameter-list , attribute-specifier-seq? typename identifier :: ␣
→˓template? simple-template-id continue-decl-specifier-seq decl-specifier-seq abstract-
→˓declarator?

typedef-name
type-name
nested-name-specifier

typename-
→˓specifier

type-
→˓specifier

defining-type-
→˓specifier

decl-
→˓specifier

decl-specifier-
→˓seq

parameter-
→˓declaration

template-
→˓parameter
template-parameter-

→˓list

shift using rule class-name -> identifier

template-parameter-list , attribute-specifier-seq? typename identifier :: ␣
→˓template? simple-template-id continue-decl-specifier-seq decl-specifier-seq abstract-
→˓declarator?

class-name

(continues on next page)

48 Chapter 1. Motor documentation



Motor

(continued from previous page)

type-name
nested-name-specifier

typename-
→˓specifier

type-
→˓specifier

defining-type-
→˓specifier

decl-
→˓specifier

decl-specifier-
→˓seq

parameter-
→˓declaration

template-
→˓parameter
template-parameter-

→˓list

shift using rule template-name -> identifier
template-parameter-list , attribute-specifier-seq? typename identifier <␣

→˓template-argument-list? > :: template? simple-template-id continue-decl-specifier-seq␣
→˓decl-specifier-seq abstract-declarator?

template-name
simple-template-

→˓id
typedef-

→˓name
type-

→˓name
nested-name-

→˓specifier
typename-

→˓specifier
type-

→˓specifier
defining-type-

→˓specifier
decl-

→˓specifier
decl-specifier-

→˓seq
parameter-

→˓declaration
template-

→˓parameter
template-parameter-

→˓list

reduce using rule type-parameter-key -> typename

template-parameter-list , attribute-specifier-seq? typename identifier

(continues on next page)

1.2. Extra tools 49



Motor

(continued from previous page)

type-parameter-key identifier?
type-parameter
template-parameter

template-parameter-list

initializer, parameters-and-qualifiers

A ( token could introduce either a parameters-and-qualifiers clause, or an initializer. In some cases, the additional
tokens will disambiguate the declaration. In other cases, the statement is truly ambiguous.

ptr-declarator -> noptr-declarator
parameters-and-qualifiers -> ( parameter-declaration-clause ) cv-qualifier-seq? ref-
→˓qualifier? exception-specification? attribute-specifier-seq?

reduce using rule ptr-declarator -> noptr-declarator

attribute-specifier-seq decl-specifier-seq noptr-declarator ( expression-list ) ;
ptr-declarator initializer
declarator
init-declarator
init-declarator-list

simple-declaration
block-declaration
declaration

shift using rule parameters-and-qualifiers -> ( parameter-declaration-clause ) cv-
→˓qualifier-seq ref-qualifier exception-specification attribute-specifier-seq

attribute-specifier-seq decl-specifier-seq noptr-declarator ( parameter-declaration-
→˓clause ) cv-qualifier-seq? ref-qualifier? exception-specification attribute-specifier-
→˓seq? parameters-and-qualifiers trailing-return-type function-body

parameters-and-
→˓qualifiers

noptr-
→˓declarator

␣
→˓declarator
function-

→˓definition
␣
→˓declaration

50 Chapter 1. Motor documentation



Motor

trailing-return-type, abstract-declarator / parameters-and-qualifiers / initializer

In the context of a trailing return type, the ( token can mark either the beginning of a parameter-and-qualifiers clause,
a noptr-abstract-declarator or an initializer. There is no way to know until more tokens have been parsed.

parameters-and-qualifiers -> ( parameter-declaration-clause ) cv-qualifier-seq? ref-
→˓qualifier? exception-specification? attribute-specifier-seq?
type-id -> type-specifier-seq
noptr-abstract-declarator -> ( ptr-abstract-declarator )

shift using rule parameters-and-qualifiers -> ( parameter-declaration-clause )

decl-specifier-seq noptr-declarator parameters-and-qualifiers -> type-specifier-seq (␣
→˓parameter-declaration-clause ) cv-qualifier-seq? ref-qualifier? exception-
→˓specification? attribute-specifier-seq? trailing-return-type ;

␣
→˓parameters-and-
→˓qualifiers

␣
→˓abstract-
→˓declarator

type-
→˓id

trailing-return-
→˓type

␣
→˓declarator

init-
→˓declarator

init-declarator-
→˓list
simple-

→˓declaration
block-

→˓declaration
␣
→˓declaration

reduce using rule type-id -> type-specifier-seq

decl-specifier-seq noptr-declarator parameters-and-qualifiers -> type-specifier-seq (␣
→˓expression-list ) ;

type-id ␣
→˓initializer

trailing-return-type
declarator
init-

→˓declarator
init-declarator-

→˓list
simple-

→˓declaration
block-

(continues on next page)

1.2. Extra tools 51



Motor

(continued from previous page)

→˓declaration
␣
→˓declaration

shift using rule noptr-abstract-declarator -> ( ptr-abstract-declarator )

decl-specifier-seq noptr-declarator parameters-and-qualifiers -> type-specifier-seq (␣
→˓ptr-abstract-declarator ) parameters-and-qualifiers trailing-return-type ;

␣
→˓noptr-abstract-declarator

␣
→˓abstract-declarator

type-
→˓id

trailing-return-
→˓type

␣
→˓declarator

init-
→˓declarator

init-declarator-
→˓list
simple-

→˓declaration
block-

→˓declaration
␣
→˓declaration

The parser maintains all possibilities in parallel and the semantic analyzer makes a pick among valid results in the next
phase.

type template parameter, non-type class template parameter

When a template-parameter clause starts with the token class, it is not determined yet if the parameter will be a
type-parameter or a parameter-declaration of an elaborated-type-specifier. Additional tokens need to be parsed to
disambiguate.

class-key -> class
type-parameter-key -> class

reduce using rule class-key -> class

class identifier identifier
class-key
elaborated-type-specifier
type-specifier
defining-type-specifier
decl-specifier
decl-specifier-seq

(continues on next page)

52 Chapter 1. Motor documentation



Motor

(continued from previous page)

parameter-declaration
template-parameter

reduce using rule type-parameter-key -> class

class identifier
type-parameter-key
type-parameter
template-parameter

deduction-guide, template-declaration

A user-defined deduction guide is defined with the same syntax as a function declaration with a trailing return type,
except that it uses the name of a class template as the function name. The parser cannot disambiguate a deduction-
guide from a simple-declaration, so it allows both branches to be parsed simultaneously and leaves the resolution to
the semantic analyzer.

In order to aid the parser, a dummy empty reduction is added early in the rules to move the conflict early. The grammar
is tagged on the dummy reduction instead.

The merge is done at the declaration rule or the member-declaration rule.

State 0

explicit_declaration, explicit_deduction ⇒ ambiguous_explicit_declaration

State 17

declaration[explicit_deduction]
 ♦ deduction-guide

declaration-seq?[ambiguous_explicit_declaration]
 ♦ declaration

declaration-seq[ambiguous_explicit_declaration]
 ♦ declaration

declaration[explicit_declaration]
 ♦ block-declaration

declaration[explicit_declaration]
 ♦ function-definition

deduction-guide[explicit_deduction]
 ♦ attribute-specifier-seq? deduction-guide-begin explicit-specifier template-name ( parameter-declaration-clause ) -> simple-template-id ;

translation-unit[ambiguous_explicit_declaration]
 ♦ declaration-seq?

declaration-seq?[ambiguous_explicit_declaration]
 ♦ declaration-seq declaration

declaration-seq[ambiguous_explicit_declaration]
 ♦ declaration-seq declaration

translation-unit'[ambiguous_explicit_declaration]
 ♦ translation-unit <eof>

simple-declaration[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq init-declarator-list? ;

block-declaration[explicit_declaration]
 ♦ simple-declaration

function-definition[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq declarator function-body

function-definition[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq declarator virt-specifier-seq function-body

function-definition[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq declarator requires-clause function-body

simple-declaration[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq ref-qualifier? [ identifier-list ] initializer ;

deduction-guide-begin[explicit_deduction]
 ♦ 

deduction-guide[explicit_deduction]
attribute-specifier-seq? ♦ deduction-guide-begin explicit-specifier template-name ( parameter-declaration-clause ) -> simple-template-id ;

explicit-specifier[explicit_declaration]
 ♦ explicit

function-specifier[explicit_declaration]
 ♦ explicit-specifier

decl-specifier[explicit_declaration]
 ♦ function-specifier

decl-specifier-seq[explicit_declaration]
 ♦ decl-specifier continue-decl-specifier-seq decl-specifier-seq

decl-specifier-seq[explicit_declaration]
 ♦ decl-specifier end-decl-specifier-seq attribute-specifier-seq?

simple-declaration[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq init-declarator-list? ;

function-definition[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq declarator function-body

function-definition[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq declarator virt-specifier-seq function-body

function-definition[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq declarator requires-clause function-body

simple-declaration[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq ref-qualifier? [ identifier-list ] initializer ;

explicit-specifier[explicit_declaration]
 ♦ explicit ( constant-expression )

State 336

explicit_declaration, explicit_deduction ⇒ ambiguous_explicit_member_declaration

State 544

member-declaration[explicit_deduction]
 ♦ deduction-guide

member-specification?[ambiguous_explicit_member_declaration]
 ♦ member-declaration member-specification?

member-declaration[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq member-declarator-list? ;

member-declaration[explicit_declaration]
 ♦ function-definition

deduction-guide[explicit_deduction]
 ♦ attribute-specifier-seq? deduction-guide-begin explicit-specifier template-name ( parameter-declaration-clause ) -> simple-template-id ;

class-specifier[ambiguous_explicit_member_declaration]
class-head { ♦ member-specification? }

function-definition[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq declarator function-body

function-definition[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq declarator virt-specifier-seq function-body

function-definition[explicit_declaration]
 ♦ attribute-specifier-seq? decl-specifier-seq declarator requires-clause function-body

deduction-guide-begin[explicit_deduction]
 ♦ 

deduction-guide[explicit_deduction]
attribute-specifier-seq? ♦ deduction-guide-begin explicit-specifier template-name ( parameter-declaration-clause ) -> simple-template-id ;

explicit-specifier[explicit_declaration]
 ♦ explicit

function-specifier[explicit_declaration]
 ♦ explicit-specifier

decl-specifier[explicit_declaration]
 ♦ function-specifier

decl-specifier-seq[explicit_declaration]
 ♦ decl-specifier continue-decl-specifier-seq decl-specifier-seq

decl-specifier-seq[explicit_declaration]
 ♦ decl-specifier end-decl-specifier-seq attribute-specifier-seq?

member-declaration[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq member-declarator-list? ;

function-definition[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq declarator function-body

function-definition[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq declarator virt-specifier-seq function-body

function-definition[explicit_declaration]
attribute-specifier-seq? ♦ decl-specifier-seq declarator requires-clause function-body

explicit-specifier[explicit_declaration]
 ♦ explicit ( constant-expression )

1.2. Extra tools 53



Motor

1.2.2 The OpenCL C++ toolchain

54 Chapter 1. Motor documentation



CHAPTER

TWO

API DOCUMENTATION

55



Motor

56 Chapter 2. API documentation



CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

57


	Motor documentation
	Using Motor and developing
	Building Motor from source
	Setting up a build environment
	Building from the command line

	Integrated Development Environment support

	Extra tools
	Pyxx, the C/C++/Objective-C/Objective-C++ parser
	Parsing methodology
	Parsing stages
	Conflict resolution
	Dynamic conflict resolution
	Conflict context and counter-examples

	Rule tweaks
	Allowing extra attribute-specifier-seq?
	class-head / elaborated-type-specifier and enum-head / elaborated-enum-specifier

	Static conflict resolution
	template-parameter-list/template-argument-list, >
	selection-statement, else
	elaborated-enum-specifier / opaque-enum-declaration
	enum-base / bitfield specifier
	base-clause / bitfield specifier
	new-expression, { and assignment-expression, =
	nested-name-specifier, ::
	conversion-type-id, attribute-specifier-seq
	explicit-specifier/noexcept-specifier, (
	Operators new, new[], delete, delete[]
	Operators delete, delete[] and lambda-expression
	conversion-declarator, binary operators
	new-type-id, binary operators
	destructor, unary ~ operator
	constraint-logical-and-expression, &&
	global-module-fragment
	requirement-expression, nested-requirement
	id-expression in a template-argument
	export-declaration, export module-import-declaration

	Dynamic conflict resolution
	class-name, enum-name, typedef-name in a type-name
	declarator, decl-specifier
	template-id, <
	variadic-parameter-list, pack-declarator
	primary-expression, pure-specifier / bitfield declaration, mem-initializer / compound-statement, brace-or-equal-initializer
	typename-specifier, typename-parameter
	initializer, parameters-and-qualifiers
	trailing-return-type, abstract-declarator / parameters-and-qualifiers / initializer
	type template parameter, non-type class template parameter
	deduction-guide, template-declaration


	The OpenCL C++ toolchain


	API documentation
	Indices and tables

